Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Zi-Qiang Hu, Duan-Jun Xu* and Yuan-Zhi Xu

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in main residue
R factor $=0.054$
$w R$ factor $=0.154$
Data-to-parameter ratio $=10.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

(S)-Alanine-(S)-mandelic acid (1/1)

Crystals of the title molecular complex, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}$, were obtained from the remaining filtrate after separating the crystals of a molecular complex of (S)-alanine- (R)-mandelic acid in an optical resolution experiment using (S)-alanine. Each (S)-alanine is hydrogen bonded to three (S)-mandelic acid molecules (and vice versa). The carboxylate of (S)-alanine is nearly coplanar with the carboxyl group of (S)-mandelic acid, a situation that is very different from that found in the reported (S)-alanine- (R)-mandelic acid.

Comment

In the investigation of the optical resolution of racemic mandelic acid by (S)-alanine, crystals of the molecular complex of (S)-alanine and (R)-mandelic acid $[(S) \mathrm{A} /(R) \mathrm{M}]$ were obtained from the solution of racemic mandelic acid and (S)-alanine, and the crystal structure has been reported (Hu et al., 2002). After several days separating the $(S) \mathrm{A} /(R) \mathrm{M}$ crystals from the solution, new crystals appeared in the remaining filtrate. An X-ray structure analysis revealed that the new crystals are (S)-alanine- (S)-mandelic acid (1/1) $[(S) \mathrm{A} /(S) \mathrm{M}]$, (I), a diastereomer of $(S) \mathrm{A} /(R) \mathrm{M}$. We present here the structure of (I), for comparison with the reported $(S) \mathrm{A} /(R) \mathrm{M}$.

(I)

The title molecular complex consists of (S)-alanine and (S) mandelic acid in a 1:1 ratio. The ordered (S)-alanine displays the normal inner-salt structure (Table 1) and links with three neighboring (S)-mandelic acid molecules via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O} \cdots \mathrm{H}-\mathrm{O}$ hydrogen bonds (Table 2). The phenyl ring of (S)-mandelic acid is disordered, three different orientations being observed in the crystal (Fig. 1); this is due to the space around the phenyl group, as shown in the molecular packing diagram (Fig. 2).

There are several distinct structural differences between (I) and the reported $(S) \mathrm{A} /(R) \mathrm{M}$. The asymmetric unit contains one (S)-alanine and one (S)-mandelic acid molecule in (I), but two (S)-alanine, two (R)-mandelic acid and one water molecule in $(S) \mathrm{A} /(R) \mathrm{M}$, which is a hydrate. Strong hydrogen bonding occurs between the carboxylate group of alanine and the carboxyl group of mandelic acid in both (I) and (S) A/ $(R) \mathrm{M}$, the $\mathrm{O} \cdots \mathrm{O}$ separation being 2.461 (4) \AA in (I), and 2.494 (3) and 2.554 (3) \AA in $(S) \mathrm{A} /(R) \mathrm{M}$. The $\mathrm{O}-\mathrm{H}$ bond of the carboxyl group is anti to the $\mathrm{C}=\mathrm{O}$ bond in (I), but syn to the $\mathrm{C}=\mathrm{O}$ bond in $(S) \mathrm{A} /(R) \mathrm{M}$. The carboxylate plane is

Received 22 December 2003
Accepted 20 January 2004 Online 30 January 2004

Figure 1
The structure of (I), with 30% probability displacement ellipsoids, the dashed lines showing the hydrogen bond between (S)-alanine and (S) mandelic acid [symmetry codes: (ii) $1-x, y,-z$; (iii) $\left.x-\frac{1}{2}, \frac{1}{2}+y, z\right]$. Three components of the disordered mandelic acid molecule are illustrated.

Figure 2
A molecular packing diagram, showing the intermolecular hydrogen bonding (as dashed lines) and the space around the phenyl ring.
roughly coplanar with the carboxyl plane in (I), the dihedral angle being $26.4(3)^{\circ}$, but in $(S) \mathrm{A} /(R) \mathrm{M}$ they are nearly perpendicular to each other, the dihedral angles being 56.8 (3) and $59.6(3)^{\circ}$, respectively, for the two independent molecules.

Experimental

Racemic mandelic acid ($1.5 \mathrm{~g}, 10 \mathrm{mmol}$) and (S)-alanine $(0.90 \mathrm{~g}$, $10 \mathrm{mmol})$ were dissolved in hot water $(10 \mathrm{ml})$ and the solution was kept at room temperature. After 2 d , crystals $(0.85 \mathrm{~g})$ of $(S) \mathrm{A} /$
$(R) \mathrm{M} \cdot \mathrm{H}_{2} \mathrm{O}$ were separated from the solution (Hu et al., 2002). The remaining filtrate was kept at room temperature to obtain more crystals. The fine crystals of the title compound (0.45 g) were obtained from the remaining filtrate after a further 3 d . The CHN content was analyzed using an Eager 200 elemental analysis instrument. Analysis calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{5}$: C 54.8 , H 6.3, N 5.8%; found: C 54.7 , H 6.3 , N 5.9%. The specific optical rotation $[\alpha]_{D}$ of $+80.2^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)$ was determined using a Wzz-1S instrument. Recrystallization from an aqueous solution was performed to obtain well shaped single crystals of the title compound.

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}$
$M_{r}=241.24$
Monoclinic, C2
$a=17.795$ (4) £
$b=5.394$ (2) \AA
$c=12.431(2) \AA$
$\beta=100.650(10)^{\circ}$
$V=1172.7(5) \AA^{3}$
$Z=4$
$D_{x}=1.366 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 20 reflections
$\theta=5.5-9.8^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, colorless
$0.4 \times 0.4 \times 0.2 \mathrm{~mm}$

Data collection

Rigaku AFC-7S diffractometer $\omega / 2 \theta$ scans
$h=-1 \rightarrow 22$
1928 measured reflections
1484 independent reflections
1276 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=27.5^{\circ}$
$k=-7 \rightarrow 1$
$l=-16 \rightarrow 15$
3 standard reflections every 150 reflections intensity decay: 0.6%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.154$
$S=1.06$
1484 reflections
136 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0812 P)^{2} \\
&+1.03 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.35 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters (\AA).

$\mathrm{O} 1-\mathrm{C} 2$	$1.422(4)$	$\mathrm{O} 5-\mathrm{C} 9$	$1.272(4)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.270(4)$	$\mathrm{N}-\mathrm{C} 10$	$1.479(4)$
$\mathrm{O} 3-\mathrm{C} 1$	$1.230(4)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.521(4)$
$\mathrm{O} 4-\mathrm{C} 9$	$1.224(4)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.514(5)$

Table 2
Hydrogen-bonding geometry ($\left(\AA,{ }^{\circ}\right.$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\text {i }}$	0.82	1.98	2.797 (4)	171
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 5$	0.82	1.67	2.461 (4)	163
$\mathrm{N}-\mathrm{H} 3 A \cdots \mathrm{O} 4^{\text {iv }}$	0.89	1.87	2.763 (4)	176
$\mathrm{N}-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O} 1^{\text {iii }}$	0.89	1.99	2.877 (4)	173
$\mathrm{N}-\mathrm{H} 3 \mathrm{C} \cdots \mathrm{O}^{\text {ii }}$	0.89	2.12	3.000 (4)	169

Symmetry codes: (i) $x, y-1, z$; (ii) $1-x, y,-z$; (iii) $x-\frac{1}{2}, \frac{1}{2}+y, z$; (iv) $x, 1+y, z$.

Three different orientations for the phenyl ring were found in a difference Fourier map. Isotropic rigid-group refinement for the phenyl rings was performed. The three occupancies were initially refined and then fixed in the final cycles of refinement. H atoms on the N atom were located in a difference Fourier map, then refined as a group with $\mathrm{N}-\mathrm{H}=0.89 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{N})$. Other H atoms
were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$, and treated as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ or $1.5 U_{\text {eq }}$ of the carrier atoms. The absolute configuration was assigned on the basis of the S configuration of the starting (S)-alanine and was not determined directly from the X-ray data; Friedel pairs were averaged.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1985); program(s) used to solve structure: SIR-2 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (No. 29973036).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hu, Z.-Q., Xu, D.-J., Xu, Y.-Z., Wu, J.-Y. \& Chiang, M. Y. (2002). Acta Cryst. C58, o612-o614.
Molecular Structure Corporation (1985). TEXSAN. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. Version 5.32. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

